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Abstract—Wildlife image classification operating on the com-
bination of global social media coverage, citizen-science, and
camera trap networks could potentially provide a unparalleled
global real-time form of wildlife observation, enabling conserva-
tion efforts and ecological studies. The current state of wildlife
classification is required to deal with issues such as dataset long-
tail distributions, and variable data quality due to the harsh and
remote conditions inhabited by wildlife.

A novel wildlife dataset is created to facilitate the study. The
dataset encompasses observations of the Felidae and Elephantidae
taxonomic families, as well as extensive metadata forming a
spatiotemporal snapshot of the environment describing each
observation. The resulting dataset acts as a generic representative
encompassing the issues underlying wildlife classification.

We investigate the performance of image and metadata clas-
sifiers within the taxonomic structure. The study of metadata
classification within the taxonomic structure is considered to be a
novel contribution of the study. It determines an increasing classi-
fication performance with decreasing taxonomic levels, achieving
a 90% balanced accuracy at the subspecies level using an
XGBoost classifier. The performance of the image classifier using
the EfficientNet-B6 Convolutional Network (CNN) architecture
within the taxonomic structure, determines an opposing trend of
decreasing classification performance with decreasing taxonomic
levels due to the high inter-species visual similarity and limited
training data. These findings form the foundation of the proposed
novel cascading ensemble (CE) classifier, which displays an
accuracy improvement of up to 10 times that of traditional image
classification on the proposed dataset.

Index Terms—wildlife classification, convolutional neural net-
work, CNN, metadata, spatiotemporal, automated species identi-
fication, taxonomy, images, XGBoost, cascading classifier, ensem-
ble classifier

I. INTRODUCTION

Wildlife classification has become an essential monitoring,
observation, and research tool, allowing us an unparalleled
glimpse into the real-time state of global wildlife populations.
It is utilized across a variety of domains, ranging from
conservation management as a tool to monitor population
sizes and behaviour [2], [15], [24], [27], [32] through to
ecological studies pursuing knowledge of the natural world
[16].

This thesis was prepared in partial fulfilment of the requirements for the
Degree of Bachelor of Science in Data Science and Artificial Intelligence,
Maastricht University. Supervisor(s): Christof Sieler, Mirela Popa

The primary use of wildlife classification is the removal of
the bottleneck surrounding image labelling, saving researchers
and organizations time and funding [2], [15]. The presence
of social media content, camera-trap networks, remote
monitoring, and citizen-science platforms generate a global
network of monitoring and observation potential. The use of
an accurate wildlife classification system could potentially
enable a cost-effective near real-time form of global wildlife
observation, reaching to the most remote corners of the globe.

Multiple prominent issues impede the progress of robust
wildlife classification, specifically varied image data quality,
unbalanced data resulting in a long-tail distribution, and high
inter-species visual similarity. A robust classifier should be
capable of utilizing all available information in order to
accurately predict the wildlife class despite any present issues.

Fig. 1: Taxonomic Classification

The term observation is used to describe each individual
sighting of wildlife and the associated information. Modern
cameras capturing observations enable the collection of
metadata associated with the image. Common metadata
includes: date, time, and location. Using the common
metadata to extract spatiotemporal features from external
sources produces a snapshot of the immediate environment of
the observation. This snapshot can be leveraged to inform the
image classification process, assuming an underlying relation
between wildlife and their environment. Existing studies have



successfully investigated the advantage of using metadata to
inform classification [29], [30].

This study, further investigates the use of the taxonomic
structure (Figure 1) underlying wildlife, as a means of
structuring the classification process as a cascading tree
classifier. This structure generates successive levels of
abstraction aligned with each taxonomic level. An existing
study has demonstrated an improvement when using the
taxonomy tree in classification [6].

Specifically, this study investigates the performance of both
image and metadata classifiers within the taxonomic tree
structure, to leverage their potential strengths and mitigate
their potential weaknesses to form a novel cascading ensemble
classification method. This method is capable of classifying
observations to the subspecies taxonomic level. This can be
encapsulated in the formulation of three research questions:

1) How does taxonomic level influence the performance of
metadata classification?

2) How does taxonomic level influence the performance of
image classification?

3) How does the proposed novel classification method
improve upon baseline classifiers?

The novel contributions of this study to the field of wildlife
classification include:

1) The collection and generation of a new dataset contain-
ing both labelled images and accurate metadata.

2) A study of metadata based models through the taxo-
nomic levels.

3) A novel cascading ensemble wildlife classification
model.

II. RELATED WORKS

A. Datasets

Wildlife images are currently sourced primarily from
citizen-science platforms and camera-trap networks. Citizen-
science platforms enable members of the public to upload
captured observations of wildlife, where through group con-
sensus the observation is labelled. Two prominent platforms,
iNaturalist [10] and Zooniverse [34], respectively containing
139 million and 250 million observations encompassing all
domains of life. The dataset within this study made use of a
subset of the observations from iNaturalist.

Annually, a selection of iNaturalist images form the iNat-
uralist challenge, providing a baseline dataset to push the
boundaries of image classification.

Camera-trap networks are a set of fixed-location,
strategically placed cameras, that capture a burst of images
when a motion sensor is triggered by wildlife. The largest
camera-trap network to date, is the Snapshot-Safari network
[17]. It stretches across 25 distinct networks around the globe
and contains 9 million observations.

The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [22], is an annual image classification challenge
based on a dataset encompassing 1000 common classes.
Classes include wildlife such as, elephants, snakes, and
crocodiles amongst others. This challenge serves as a bench-
mark against which state-of-the-art image classifiers can be
compared.

B. Image Classification

The results of the ILSVRC challenge provide a historical
record of image classification performance, including current
state-of-the-art image classifiers and their benchmark perfor-
mance. Convolutional Neural Network (CNN) models pro-
vided the initial success in image classification. AlexNet [11]
was created for the 2012 ILSVRC challenge achieving a 39.7%
top-1 error-rate. In 2013 the VGG-16 [26] model achieved a
24.7% top-1 error-rate surpassing AlexNet. The capability of
CNN models continued to grow with the creation of ResNet
[8] and EfficientNet [28] of which the latter achieved a 88.4%
top-1 accuracy. The performance of CNN models had now
surpassed human recall levels [32]. Deviations from the CNN
architecture into the realm of vision transformer models such
as ViT-G/14 [33], has achieved accuracy as high as 90% top-1
accuracy.

Gomez, Salazar, & Vargas, 2017 [7] present a study com-
paring the performance of multiple CNN architectures on
the Snapshot Serengeti dataset (a camera-trap network of
Snapshot-safari). The study determined a 88.8% top-1 accu-
racy using a residual network (ResNet).

C. Image Classification Using Metadata

Tang, Paluri, Fei-fei, Fergus, & Bourdev, 2015 [29] explored
the use of location metadata as a means of improving exist-
ing geospatial image classification. The study determined an
almost 7% mean accuracy improvement.

Ellen, Graff, & Ohman, 2019 [5] further investigated the
use of metadata to support image classification within the
aquatic domain. The metadata included geotemporal (depth,
location, time, etc.) and hydrographic (temperature, salinity,
chlorophyll α, etc.) features. Multiple methods of metadata
inclusion were investigated, including simple concatenation,
metadata interaction, and more metadata interaction models.
The study noted a boosted classification performance, with the
top-model achieving 93% accuracy within a 27 class dataset.

Terry, Roy, & August, 2019 [30] study the effect of metadata
on the classification of ladybirds (Coccinellidae) within the
United Kingdom. The study made use of weather records,
species distribution maps, habitat information, and phenology
records amongst others. They made a distinction between
two types of metadata: primary metadata, which contains
the information included in the original sighting, and derived
(secondary) metadata, which contains information further ex-
tracted using the primary metadata. The study determined
an improvement of 9.1% top-1 accuracy. Notably, the study
utilized select model architectures introduced by Ellen et
al., 2019 [5], concluding that both the ensemble (metadata



interaction) and combined (simple concatenation) architectures
demonstrate improved performance over standalone image
classification, with the combined architecture demonstrating
the most significant improvement.

D. Classification Using Taxonomic Structure

Carlos & Silla, 2011 [25] conducted a survey of hierar-
chical classification methods across domains. They provide
a framework of hierarchical classification approaches, and a
discussion of each methodology. Hierarchical classification is
modelled typically as a tree structure or a Directed Acyclic
Graph (DAG). The study describes the flat-classifier approach,
the local classifier per node approach, the local classifier per
parent node approach, the local classifier per level approach,
and the global classifier approach. Elaborating further on the
flat-classifier, local classifier per parent node, and the global
approach due to their relevance. The flat-classifier approach is
the standard classification approach classifying the leaf nodes
of the tree. The local classifier per parent node approach
(selective classifier), assigns a classifier to each parent node
(including the root) in order to classify/ select each child node
at each respective depth, forming a cascade of classification.
The global classifier approach aims to classify the entire tree
across all depths and nodes.

Gomez-donoso, Escalona, Pérez-estev, Cazorla, 2021 [6]
explored the capability of a modified global hierarchical ap-
proach to classify the iNaturalist [31] dataset. They achieved a
taxonomic multi-level classification by utilizing an Efficient-
Net [28] convolutional backbone and modifying the output into
7 parallel, fully connected layers, each tasked with classifying
a select taxonomic level. The model architecture resulted in a
62% top-1 accuracy. Notably Gomez-donoso et al., 2021 state
they expect an accuracy boost if a cascade classification struc-
ture is utilized, however that the computation costs involved
make this infeasible for any real application use.

Rezende, Xavier, Ascher, Fernandes, & Pirez, 2022 [20]
explored the framework provided by Carlos & Silla, 2011
applied to biological databases, specifically those following a
taxonomic structure. Notably they specified the issues related
to hierarchical classification, namely balancing partial or full
depth prediction, deep tree levels/ classification, unbalanced
classes, and a high number of classes. A parallel can be drawn
to the issues underlying wildlife classification and the issues
face by Rezende et al., 2022 [20].

III. DATASET

The dataset is comprised of observations sourced from
the citizen-science platform iNaturalist [10]. The observations
contain wildlife images and primary metadata. Secondary
metadata in the form of spatiotemporal data is derived from
Open-Meteo [18], an open source weather Application Pro-
gramming Interface (API). The combination of the wildlife
observations and spatiotemporal snapshots describing each
observation forms a novel dataset [4]

A. Observations

The available images on the platform originate from a
combination of citizen-science and camera-traps. Due to
the time and resource limitations of the study, a subset of
the available iNaturalist data is retrieved. This serves as
a generic representative of the issues encountered within
wildlife classification. Specifically, the taxonomic families
of the Animalia kingdom, Elephantidae and Felidae were
selected to form the data subset. This subset encompasses
a diverse global population inhabiting both accessible and
remote regions of the globe, as seen in Figure 2. Additionally,
it is characterized by a long-tail population distribution,
fulfilling the role of a generic wildlife dataset. The resulting
set of observations spans 2 taxonomic families, 16 taxonomic
genera, 48 taxonomic species, and 67 taxonomic subspecies.
For a comprehensive breakdown of each taxonomic level
please review Tables II, III, IV, and V in the Appendix
(section IX).

The primary metadata of the observation includes the date
and time, geographic location, positional accuracy, and the
relevant taxonomic labels for the family, genus, and species.
Note, that for the subspecies taxonomic label, iNaturalist
[10] has the capability to provide a subspecies label in the
data download. However within this dataset the subspecies
label is derived from the provided common name, as the
potential for subspecies classification became apparent late in
the study. As a result, the subspecies labels are not present
for all observations.

Additionally, common house hold cats—Felis catus—are
present within the observations. All observations from this
class are removed from the dataset to maintain wildlife
only classes. The location of endangered wildlife species is
obscured from poachers by iNaturalist. A random location
within a 22 km2 areas surrounding the original location is
assigned as a replacement. The publicly available positional
accuracy metadata value is effected by the obfuscation. All
observations with positional accuracy’s below 40 kilometers
are accepted, under the assumption that relevant critical
geographic and environmental conditions are captured due to
the scale of weather states and geographic features.

The dataset contains mislabelled and erroneous images that
requiring pre-processing before use within a classification
model. Section IV-B1 provides a detailed description of the
pre-processing steps required to generate the final observation
images within the dataset. The final images show variable
quality and resolution as a result of the pre-processing, provid-
ing a challenging dataset for traditional image classification.

B. Environmental Data

Secondary metadata in the form of environmental descrip-
tors are derived from the observation’s primary metadata,
similarly to the study conducted by Terry et at., 2019 [30].



Fig. 2: The Geographic Distribution of Elephantidae and Felidae Showcasing the Global Observation Hotspots and Quantities

The secondary metadata forms a snapshot of the spatiotem-
poral conditions of the observation. This is accomplished
through the use of Open-Meteo [18] open-source weather
API. Open-Meteo sources comprehensive weather conditions
directly from Copernicus satellite data [9]. The API allows
for the collection of daily aggregate and hourly weather
information, at a resolution of 11 km2 around the specified
location. The weather information produces features such as
elevation, precipitation, cloud-cover, apparent temperature, and
maximum temperature, amongst others.

From the derived secondary metadata, further extrapolation
is applied to extract additional features. In total, a set of
53 environmental features form the spatiotemporal snapshot
of each observation. This set of features is referred to as
metadata going forward. For a comprehensive breakdown of
all metadata (primary and secondary) features, review Table
VI.

Missing values are interpolated using the annual aggregate
profile per species. Where interpolation could not be applied
to the missing values, the observation record is dropped from
the dataset.

IV. METHODS

The methods employed to generate the novel CE classifier,
are the byproduct of the performance of metadata and image
classifiers within the taxonomic tree. Within the framework of
Carlos & Silla, 2011 [25] the image and metadata classifiers
form symmetric local classifiers per parent node, using the
taxonomic tree as the underlying structure. Despite the valid

consideration of massive computational expense by Gomez-
donosos et al., 2021 [6] the cascading methodology is further
explored to determine the magnitude of the potential perfor-
mance improvement on both metadata and image classifiers.
This section elaborates on the pre-processing, methods, and
structure of the meta and image models, before detailing
their combined collaboration within the cascading ensemble
classifier.

A. Meta Classification

Metadata classifiers attempt to capture the relationship
between the geographic and environmental features, and the
observed wildlife. The meta-model has a feature-space encom-
passing 53 unique metadata values describing each observa-
tion. To determine a robust classifier that captures the potential
relation between environment and wildlife, five classification
models are explored: XGBoost [3], decision tree, neural net-
work, random forest, and Adaboost [23].

1) Pre-processing: The metadata is pre-processed within a
pipeline to generate a usable format of data that can serve as
a set of input features with corresponding taxonomic labels.
All models perform identical steps of pre-processing. Critical
components include the limitation of taxonomic classes to
include at least five unique observations, in order to serve as
a class in the training data; and the bolstering of minority
classes through the use of random oversampling within the
imbalanced-learn library [13] in order to account for the data
imbalance.



An additional critical element to the pipeline is the
encoding of coordinate features. Coordinates in the form of
latitude and longitude generate an enormous feature space,
which may present a challenge to the models to learn the
relevance of the location. In order to encode the coordinates,
a K-means clustering algorithm [14] is trained on the latitude
and longitude features to generate a set of observation
hot-spots, reducing the feature space. However, due to the
cascading classification process a unique model is required
at each taxonomic parent node of the taxonomic tree. This
requires automated selection of the centroid hyper-parameter
in order to capture the relevant geographic information
contained within the taxonomic children, which vastly differs
per taxonomic level. Automated centroid selection at each
parent node requires a set of K-means models on a range
of centroid values from [4 − 60]. The mean Silhouette score
[21] of each model is calculated with the global maximum
indicating the optimal number of centroids. A visualized
example of the encoding process can be seen in Figure 3.

The above pre-processing steps are performed to generate
the input features and labels for the meta-models, but also
serve to enforce the taxonomic parent node restriction on the
dataset. Such that only observations of the taxonomic child
nodes are present in the feature vector and labels of each parent
node model.

2) Models: The set of the proposed metadata classification
algorithms is trained on the same input features generated
by the pre-processing per taxonomic parent node, with the
exceptions of necessary algorithm dependent modifications
such as One-Hot-Encoding (OHE). Prior to each model’s
training, the balanced class-weightings are calculated to
effectively weigh the model learning process to reduce the
impact of the imbalanced classes. Each proposed algorithm
performs hyper-parameter tuning and enforces a best-model
save policy based on the cross-validation balanced accuracy
evaluation metric.

The XGBoost model [3] is an optimized gradient descent
algorithm. The prominent hyper-parameter requiring tuning
is the maximum allowed depth within the decision tree
ensemble classifiers. The maximum tree depth is tuned using
5-fold cross-validation to generate a mean model balanced
accuracy, per maximum depth hyper-parameter. The set of
maximum depths is within the range of depth 1 to the number
of input features. The model producing the optimal accuracy
within the hyper-parameter tuning process is assumed to be
the best model and saved according to the best-model policy.
This process is repeated for each local parent node classifier.

The decision tree model contains set hyper-parameters,
specifically 2 as the minimum number of samples to generate
a split in the tree, and the Gini split evaluation metric. The
hyper-parameter tuning optimizes the maximum tree depth,
performing an identical optimization process as described for
the XGBoost model. The top-performing model is saved due

(a) Elephantidae Observation Geographic Distribution

(b) Silhouette Score for Centroid Range with Global Maximum Score

(c) Elephantidae Observation Locations Reduced to Hotspots

Fig. 3: Coordinate Encoding Process

to the best-model policy.

The neural network model architecture makes use of a
variably sized input layer dependent on the number of OHE
features present. The hidden layers comprise of two densely
connected layers, with 80 and 60 neurons in each respec-
tive layer. A softmax output layer generates class prediction
probabilities. The variably sized input layer is critical due



to the unknown quantity of OHE location hotspots. The top-
performing model is saved due to the best-model policy. The
architecture is visualized in Figure 4.

Hyper-parameter tuning focused on finding the optimal
learning rate due to the varied level of abstraction within
separate taxonomic levels. The set of learning rates optimized
over include rates ∈ {0.1, 0.01, 0.001, 0.0001}. An Adam
optimizer is used within the model training. Training epochs
are evaluated using categorical cross-entropy as the measure
of loss with categorical accuracy as the resultant metric. The
top-performing model is saved due to the best-model policy.

Fig. 4: Neural Network Metadata Model Architecture

The random forest model’s fixed hyper-parameters include
a minimum sample split of two observations, as well as
100 trees within the forest. Identically to the proposed
hyper-parameter tuning of both XGBoost and the decision
tree, the random forest model optimizes over the ensemble
maximum tree depth using the previously specified range.
The top-performing model is saved due to the best-model
policy.

The Adaboost model [23] is an linear ensemble method
utilizing multiple weak models in order to rectify errors of
the previous model. The main hyper-parameter optimized over
is the quantity of weak models utilized in ensemble. The
Adaboost models makes use of 5-fold cross-validation across
a range of estimators from a single estimator through to 200
estimators. Model performance is evaluated using balanced
accuracy. The top-performing model is saved due to the best-
model policy.

B. Image Classification

Image classification attempts to determine the wildlife
present exclusively from information contained within the
observation image. Based on the current state of image classifi-
cation models, the state-of-the-art model is considered to be an
image transformer such as ViT-G/14 [33]. However, due to the
quantity of models to be trained, minimizing the computational

and spatial costs is paramount. Hence, the EfficientNet-B6
model is selected to serve as the image classifier due to its
reduced size and efficient training [28] while maintaining near
state-of-the-art performance (based on ImageNet [22] dataset
results).

1) Pre-processing Using Mega-detector: The raw images
of the observations within the dataset contain erroneous and
mislabelled data. Errors consist of empty frames and images
of foot-prints (spoor) amongst others. To generate the set of
usable images present within the dataset, Mega-detector is
utilized. Mega-detector [1] is a trained You Only Look Once
(YOLO) [19] object-detection model, capable of detecting,
placing a bounding box, and labelling three classes (animal,
human, and vehicle).

The raw observation images are processed by Mega-detector
using a NVIDIA GeForce 3060 GPU unit. Each prediction
enforced a strict 75% certainty cut-off to reduce misdetections.
The resulting bounding-boxes and associated labels are use
to crop the original images, producing a single or multiple
cropped and centered images per raw observation image. To
maintain the image resolution, despite cropping, a combination
of Lanczos interpolation and edge enhancement kernels are
used. Each cropped image is assumed to maintain the provided
wildlife labels from the observation. Figure 5 showcases the
above process.

2) Model: The EfficientNet model [28], specifically model
variant B6, is a CNN. It contains a unique compound scaling
architecture to achieve increased accuracy and efficiency over
alternative CNN architectures. This model variant contains
43.3 million parameters. The input dimension requires a
(528, 528, 3) image, with pixel values within the [0, 255] value
range. The capabilities of transfer learning expedite the process
of model training [30] and reduce the quantity of training data
required. Hence, an EfficientNet-B6 model pre-trained on the
ImageNet [12] dataset has been used.

The model is augmented to suit the dataset. The 1000 class
output layer is replaced by a two-dimensional global average
pooling layer to flatten and average the previous convolutional
layer, followed by a densely connected softmax output layer
tailored to the required number of class predictions. During
training, all layers of the pre-trained network are frozen, with
the exception of the global pooling layer and softmax output
layer.

Each local parent node model training makes use of an
NVIDIA GeForce 3060 GPU unit. The training process makes
use of batch sizes ranging from [4−32] due to the long-tailed
distribution. Additionally, each model is trained over 25
epochs, with a best-model only policy. Prior to training,
class weightings are calculated to achieve a balanced rate of
learning across all classes. The model’s hyper-parameters and
optimization specifications are as follows: an Adam optimizer
with learning rate 0.001, categorical cross-entropy loss, and
balanced accuracy evaluation metric.

Note, due to the computational and time demands of the



(a) Raw Observation Image (b) Mega-detector Animal Detections

(c) Sub-image 1 (d) Sub-image 2 (e) Sub-image 3

Fig. 5: Image Pre-processing Using Mega-detector: Figure 5a shows the raw observation image, Figure 5b shows the Mega-
detector animal detections highlighted by bounding-boxes, and Figures 5c, 5d, 5e show the extracted images.

study, no hyper-parameter tuning is conducted on the image
classification models. Each image model is required to be
selected and trained manually due the excessive memory
requirements of successive model training overloading the
GPU unit.

C. Cascading Ensemble Classification

The novel CE classifier capitalizes upon the taxonomic
performance trends within the meta and image classification
components. By exploiting the taxonomic strengths, and miti-
gating the taxonomic weaknesses, a robust classifier is created.
This classifier is capable of classifying wildlife taxonomic
levels as low as the subspecies taxonomy. Based on the results
explored within sections V-A and V-B, the meta classifier’s
observed performance increases with decreasing taxonomic
depth, whereby the image classifier’s performance demon-
strates the opposite behaviour, decreasing performance with
decreasing taxonomic depth. The top-performing meta classi-
fication model to be utilized within the cascading ensemble
classifier is XGBoost.

A novel architecture is proposed to capitalize upon the
observed taxonomic performance trends, termed a cascading
ensemble classifier. Within the framework provided by Carlos
& Silla, 2011 [25] the architecture is comprised of dual
selective classifiers (local classifier per parent node approach)
utilizing meta and image models respectively (meta-tree and
image tree). The selective classifiers jointly decide the pre-
dicted child node at each parent node within the top-down

cascading classification. The joint-decision effectively exploits
the opposing taxonomic trends of meta and image classifiers
by weighting, combining, and restricting the result to a normal
distribution to maintain a softmax output. The weightings are
specified within Table I.

Due to the Mega-detector [1] pre-processing, the image
classification models must be capable of dealing with multiple
images per observation. To account for this, all images per
observation are predicted, averaged, and restricted to a normal
distribution to enforce a softmax output per observation image
classification.

Taxonomic Level Meta Weight Image Weight
Family 0.1 0.9
Genus 0.2 0.8
Species 0.5 0.5
Subspecies 0.9 0.1

TABLE I: Meta and Image Taxonomic Level Weights

The concept of the cascading ensemble classifier is sum-
marized within Figure 6. The communications protocol in
the figure represents the above described joint-classification
process. The cascading ensemble classifier makes use of over
60 models to effectively classify images within the proposed
dataset, fulfilling the roles of location encoding, meta classi-
fication, and image classification.

Note, it is essential that the output of at each parent node
within both the image and meta trees contain the same size



Fig. 6: Cascade Ensemble Classifier Concept

dimensions.

V. EXPERIMENTS

The set of experiments conducted within this study re-
volve around determining the performance of metadata and
image classification models within the taxonomic structure,
to determine taxonomic performance trends. Additionally, to
evaluate and compare the resulting CE classification within
the taxonomic structure and against baseline classification
performances.

A. Taxonomic Metadata Classifier Comparison and Taxo-
nomic Trend

The aim of this experiment is to evaluate multiple meta-
data classification model’s performance within the taxonomic
structure, to determine a potential trend and identify the most
robust metadata classification model.

The pre-processing pipeline utilized to generate the set
of input features and labels, creates a disjoint validation set
encompassing 20% percent of the data.

Each of the proposed models, XGBoost [3], decision tree,
neural network, random forest, and Adaboost [23] is trained on
the same feature vectors and labels per taxonomic parent node.
Each model is trained per the specifications in Section IV-A2
and further evaluated using the disjoint validation dataset.
The models performance is analyzed using balanced accu-
racy and f1-score as the chosen performance metrics due to
the long-tailed distribution. Specifically, analysing taxonomic
performance to determine trends, and further analysis at the
individual level.

B. Taxonomic Image Classification Trend

The aim of this experiment is to evaluate the image classi-
fication model’s performance within the taxonomic structure,
to determine potential taxonomic trends.

The image classifier is constructed with architecture and
hyper-parameters detailed within Section IV-B2. Similarly to
the metadata pipeline, the image data is restricted to the tax-
onomic parent node, enforcing classes limited to the children

of the parent node. Each image dataset is evaluated using a
disjoint validation set, containing 20% of the available images
to that node. The sum of images contained within all validation
sets is approximately 5000 images.

To provide comparable metrics to the metadata classification
experiment, the image classification models are evaluated
using balanced accuracy and f1-score. Specifically, analysing
taxonomic level performance to determine potential trends,
and further analysis at the individual level.

C. Cascading Ensemble Classifier Joint Performance
The aim of this experiment is to evaluate the joint-

classification of the CE classifier against the individual image
and metadata classification component’s performance within
the cascading structure. This is to determine the effectiveness
of image and meta model weighting within the novel classifier.
Within the experiment, the novel CE classifier is referred to as
joint-classification to represent the combining of the metadata
and image model predictions.

The cascading ensemble classifier uses the structure de-
scribed in Section IV-C. Immediate comparison of the pre-
dicted label at each taxonomic level within the cascade,
enforces early stopping where misclassification occurs. The
experiment records the predicted label of each individual
metadata and image model, the combined prediction label,
and the true label at each symmetric node within the dual
trees during the cascading prediction process.

The disjoint validation set used to evaluate the models
performance is the same disjoint set of images as used
within Section V-B, with each linked observation providing
the metadata. Note the metadata forms a disjoint set from the
meta-training and test sets used in Section V-A.

The metric of comparison similarly focuses on the balanced
accuracy at each taxonomic level, as well as the mean differ-
ences in recall, precision, and f1-score at each taxonomic level
between the joint and image classifiers. Note, the metrics are
considered different from the prior two experiments, as only
those successfully classified at the parent taxonomy level are
further classified within the cascading structure.

D. Cascading Ensemble Classifier Baseline Comparison
The aim of this experiment is to compare the performance of

the novel CE classifier against baseline metadata and image
classification models. The baseline models use the standard
flat-classification approach to classify 45 species of wildlife.
Each of the classification models follows the model structure
specified for the above metadata and image classifier experi-
ments. The validation dataset is the same as for the cascading
ensemble joint-performance experiment, comprising of ap-
proximately 5000 unseen observations (images and metadata)
on which each model is evaluated. The metric of comparison
utilized is accuracy, to compare the overall performance of the
models on the validation set.

VI. RESULTS

This section presents the results and further elaborates on
the findings across all four experiments.



A. Taxonomic Metadata Classifier Comparison and Taxo-
nomic Trend

Figure 7 visualizes the mean balanced accuracy performance
of each model type, per taxonomic level. The resulting figure
contains a red-vertical dividing line placed to indicate the
taxonomic family results are not representative of the expected
results. This is as only 2 taxonomic families Felidae and Ele-
phantidae are present in the dataset, providing an incomplete
result. The figure captures an almost linear increasing trend in
all meta-models as the taxonomic level decreases from genus
to subspecies. Notably the XGBoost model [3] outperformed
all others at all taxonomic levels in terms of balanced accuracy.

Fig. 7: Average Balanced Accuracy Meta Model Performance
per Taxonomic Level

Figure 8 shows a similar trend within the f1-score metric.
The XGBoost model remains the highest performing classifier,
whilst Adaboost performs the poorest. As such XGBoost is the
highest performing metadata classifier across both evaluation
metrics.

Figures 14a, 15a, 16a, 17a in the Appendix describe the
model f1-scores at the individual level across the taxonomy,
in alignment with the quantity of observations of each class.
The figures showcase, that with reduced data quantities, even
as low as 10 observations, the meta-models still form accurate
classifiers. However, the greater quantities of available data are
always aligned with comparatively higher performing models.

B. Taxonomic Image Classification Trend

Figure 9 visualizes the mean balanced accuracy of the
image classification models at each taxonomic level. The
figure contains an identical red vertical line fulfilling the same
purpose as described previously in Section VI-A. The figure
showcases a trend whereby balanced accuracy decreases as
the taxonomic level decreases. However, there seems to be
an increase at the subspecies taxonomy. The bars represent
percentile interval for each taxonomic level, showcasing the

Fig. 8: Meta Model f1-score per Taxonomic Level

95% confidence interval of where the data falls. The percentile
interval bars increase with decreasing taxonomic levels, with
the subspecies taxonomy having the largest percentile interval.

Fig. 9: Average Balanced Accuracy Image Classification Per-
formance per Taxonomic Level

Figure 10 follows the same trend identified within Figure 9,
showcasing a decreasing performance across precision, recall,
and f1-score metrics as the taxonomic level decreases, with a
spike in performance at the subspecies taxonomic level.

Figures 14b, 15b, 16b, 17b in the Appendix describe the
individual model f1-scores at each taxonomic level. The fig-



Fig. 10: Image Classification Performance per Taxonomic
Level

ures show an increase in zero-performance per class occur-
rences, aligned with comparatively less observations within
the dataset.

C. Cascading Ensemble Classifier Joint Performance

Figure 11 showcases a near 100% percent balanced accuracy
within the initial family taxonomy. However, as stated within
VI-A this represents a skewed and incomplete metric, hence
the presence of the red vertical line. Each of the models within
the figure experiences an increasing trend in balanced accuracy
as the taxonomic level decreases. At the genus taxonomic
level, the image classifier experiences the poorest performance
at approximately 50% percent balanced accuracy, followed by
the joint-classification with 58% percent balanced accuracy,
and the best performing meta-classification at 65% balanced
accuracy. At the species taxonomic level, the joint-classifier
experiences the best performance with approximately 80%
percent balanced accuracy, overtaking both meta and image
classifier’s balanced accuracies. At the final subspecies taxo-
nomic level the joint-classification and metadata classification
contain equal balanced accuracies, significantly outperforming
the image classification by almost 20% percent balanced
accuracy.

Figure 12 presents an increasing trend in the difference
between the joint-classification and the image model per-
formance, as the taxonomic level decreases. Showcasing an
average 35% percent joint-classification improvement over
image classification at the subspecies level. Despite the meta-
classification exceeding the joint-classification at the genus
level in Figure 11, the joint-classification shows an almost 10%
percent performance improvement in comparison to image
classification.

Fig. 11: Cascading Ensemble Classifier Prediction Breakdown

Fig. 12: Differences between Joint-classification and Image
Classification

D. Cascading Ensemble Classifier Baseline Comparison Re-
sults

Figure 13 showcases the baseline performance of the image
classification, the metadata classification, and the novel CE
classifier on the same evaluation set. The metadata clas-
sification achieves an accuracy of approximately 38%, the
image classifier achieves an accuracy of approximately 8%,
and the cascading ensemble classifier achieves an accuracy
of approximately 84%, performing at nearly 10 times the
performance of the baseline image classifier and 2.5 times
that of the baseline meta classifier.

VII. DISCUSSION

There exists a trend of increasing metadata classification
performance as taxonomic level decreases. This is best de-



Fig. 13: Species Classification Baseline Comparison against
Cascading Ensemble Classifier

scribed as a linear relation. The rational behind this occurrence
is that the metadata captures environmental/ behavioural snap-
shots that become increasingly unique to each taxonomic level
as they decrease.

From a biological perspective, each set of child nodes within
the taxonomic tree represent a genetically distinct group of
individuals/ individual. Genetic expression dictates wildlife
environmental conditions and behavioural traits which are
captured by spatiotemporal snapshots.

Higher taxonomic levels contain overlapping spatiotemporal
information due to the variety of wildlife they encapsulate.
This provides a challenge to spatiotemporal classification.
Lower taxonomic levels provide niche spatiotemporal snap-
shots that uniquely represent the wildlife, providing increased
capability to perform accurate classification. The cascade from
high to low taxonomic levels provides a continually narrow-
ing spatiotemporal domain (removing overlaps), enabling the
niche spatiotemporal snapshots to form.

For example, Figure 3a showcases only the geographic
distribution of Elephantidae species, in which there is clear
separation of environmental traits enabling classification.

The resulting metadata classification performance signifi-
cantly exceeds that of image classification at the species and
subspecies taxonomy by at least 20% as seen in Figure 11.

Allopatric1 and sympatric2 speciation bear consideration
in further research to determine the biological limitations
that determine the usefulness of spatiotemporal classification.
Such that metadata models may experience better performance
for allopatric wildlife, as compared to sympatric wildlife

1The evolution of distinct species due to geographic separation
2The evolution of a distinct species within the same geographic region

in which the metadata models could potentially experience
significantly worse performance.

There exists a trend of decreasing image classification
performance as taxonomic level decreases. An opposite linear
relation to that of metadata classification. This relationship can
be attributed to the levels of abstraction dictated by taxonomic
level, and the availability of data within the taxonomic struc-
ture.

Classification at higher levels of the taxonomic tree provides
greater visual differences, such as the distinction between the
Kingdoms of Animalia, Plantae, Fungi, Protista, and Monera,
or to the family levels of Felidae and Elephantidae. The
classification balanced accuracy result between the latter in
Figure 9 is near 95% supporting this rationale. Decreasing
taxonomic levels (genus, species, and subspecies) commonly
increase the visual similarity within taxonomic child nodes,
requiring an acute extraction of visual detail in order to
perform accurate classification.

The availability and quality of data within the taxonomic
structure must be considered in parallel to the abstraction level.
Higher taxonomic levels generally contain a greater quantity
of data as they encompassing all child nodes, as compared
to a single child node. The training of classification models
at higher taxonomic levels thereby has access to greater data
quantities, in which greater visual distinctions are more easily
extracted despite potentially poor data quality. Classification
models at lower taxonomic levels, access a reduced data
quantity in which the quality of the data may obscure acute de-
tails required for accurate classification, resulting in decreased
performance. The increased number of zero-performance per
class occurrences aligned with comparatively less observations
(Figures 14b, 15b, 16b, 17b) and the increasing confidence
intervals (Figure 9) support argumentation for the decreasing
image classification performance as taxonomic levels decrease.

However, the dataset provided is considered challenging
for image classification due to the variable image quality as a
result of the pre-processing. Image classification performance
may achieve improved results at all taxonomic levels on
alternate datasets.

The novel CE classifier outperforms traditional wildlife
flat-classification methodologies by a margin of 2.5 - 10
times (Figure 13). The improved performance measure can be
attributed to two factors. Firstly, the cascading classification
structure. Applied to image classification alone is expected to
outperform the flat-classification image model, based on Fig-
ure 11, showcasing the potential for classification improvement
when used.

Secondly, the joint-classification weighting both the image
and metadata model results at each taxonomic node, to en-
hance their strengths and mitigate the weaknesses. Specifically,
the metadata model component determining unique spatiotem-
poral snapshots at the species and subspecies level. This
provides reliable low taxonomic level classification, where
image classification typically fails within a challenging dataset.



The image classification model structure and hyper-
parameters are identical within the flat-classifier and the novel
CE classifier. This is to provide a comparison focusing solely
on the cascading structure and joint-classification differences
in the methodology. In both uses of image classification, the
models could be improved through hyper-parameter tuning,
data augmentation, or an alternative state-of-the-art model.

The metadata flat-classification performance hints at unique
spatiotemporal snapshots present in the dataset, that allow
a 30% (Figure Figure 13) percent accuracy at the species
taxonomy. The metadata classification model performance at
all taxonomic levels may decrease if extended to species that
contain overlapping spatiotemporal features. The cascading
classification structure should minimize the potential for this
occurrence, but it bears consideration that spatiotemporal
information may not always provide the high level of clas-
sification performance as seen within this study.

Despite the above considerations, the relatively poor perfor-
mance of the image and meta classifiers in comparison to the
novel cascading ensemble method, showcase its capability to
accurately classify wildlife when presented with a challenging
dataset.

VIII. CONCLUSION AND FUTURE WORK

The use of spatiotemporal metadata within the novel cas-
cading ensemble classifier significantly improves the accuracy
of wildlife classification.

The study created and used a novel dataset, combining
wildlife observations and their taxonomic labels with the
spatiotemporal conditions of the observation.

The use of the novel dataset within the study lead to the
following statements regarding metadata and image classifiers
through the taxonomic levels: metadata classification mod-
els exhibit an increasing performance trend as taxonomic
level decreases, providing strong classification capability at
lower taxonomic levels such as species and subspecies; image
classification experiences a decreasing performance trend as
taxonomic level decreases, providing accurate classification at
higher taxonomic levels such as family and genus.

The discovered image and meta classification trends
within the taxonomic structure enables an effective weighted
joint-classification, combining the individual elements to
produce an output greater than the sum of its parts. The joint-
classification is the primary concept of the novel cascading
ensemble methodology, providing increased accuracy within
the range of 2.5-10 times that of traditional meta and image
classifiers on challenging datasets. This result showcases the
enormous potential underlying the taxonomic structure of
wildlife and the essential inclusion of metadata in wildlife
classification.

The novel cascading classifier is limited by the enormous
computational time, complexity, and memory involved, prov-
ing infeasible as a real-time classifier within its current form.
However, the potential classification performance enhance-
ments implores further research. Further research avenues

include: the biological underpinnings, such as allopatric and
sympatric speciation, leading to successful metadata classi-
fication as a means of bolstering wildlife classification; the
comparison of the novel cascading classifier on a standardized
wildlife dataset, such as the iNaturalist challenge to provide
a concrete comparative benchmark; and further research into
reducing the computational and memory demands of cascading
classifiers, considering the underlying structure of the biolog-
ical domain and the enormous potential benefit.

REFERENCES

[1] Sara Beery, Dan Morris, and Siyu Yang. Efficient pipeline for camera
trap image review. arXiv preprint arXiv:1907.06772, 2019.

[2] Ruilong Chen, Ruth Little, Lyudmila Mihaylova, Richard Delahay, and
Ruth Cox. Wildlife surveillance using deep learning methods. Ecology
and Evolution, 9(17):9453–9466, 2019.

[3] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. CoRR, abs/1603.02754, 2016.

[4] Travis Dawson. Spatiotemporal wildlife dataset, 2023.
[5] Jeffrey S. Ellen, Casey A. Graff, and Mark D. Ohman. Improving

plankton image classification using context metadata. Limnology and
Oceanography: Methods, 17(8):439–461, 2019.

[6] Francisco Gomez-Donoso, Félix Escalona, Ferran Pérez-Esteve, and
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IX. APPENDIX

A. Additional Information

1) Novel Cascading Ensemble Classifier Components Dis-
cussion: The joint-classification and its individual components
(image and metadata classifiers) shows a consistent increasing
performance trend (Figure 11) as taxonomic levels decrease.
This occurrence can be attributed to the cascading structure
of the experiment. Only observations of sufficient quality
enabling correct classification cascade to the next classifier.
This results in increasing data quality as taxonomic levels
decrease, promoting improved classification metrics. Figure 11
and 12 shows joint-classification significantly outperforming
image classification at the genus and subspecies level by a
margin as significant as 35%. This result is expected due to the
reduced image quantity and the acute level of detail required
to perform accurate image classification at lower taxonomic
levels.

However, at the genus level, image classification is expected
to outperform meta classification due to the higher level of
visual abstraction, but showed the worse performance. The
anomalous result could potentially be attributed to unique

spatiotemporal meta snapshots at the genus level. It is expected
that when applied to further taxonomic genera that the image
classification results would significantly increase due to the
higher level of visual discrepancy between the genera, whereas
significant spatiotemporal overlap would potentially occur.

B. Tables and Figures

TABLE II: Dataset Taxonomic Family Breakdown

Taxonomic Name Observation Count Image Count
Felidae 44710 26668
Elephantidae 11292 14831

TABLE III: Dataset Taxonomic Genus Breakdown

Taxonomic Name Observation Count Image Count Family
Lynx 20139 12121 Felidae
Panthera 12411 7485 Felidae
Puma 5239 2725 Felidae
Leopardus 2220 1391 Felidae
Acinonyx 1872 1245 Felidae
Felis 991 633 Felidae
Caracal 595 323 Felidae
Herpailurus 448 315 Felidae
Leptailurus 442 279 Felidae
Prionailurus 291 124 Felidae
Neofelis 24 11 Felidae
Otocolobus 20 6 Felidae
Pardofelis 11 4 Felidae
Catopuma 7 4 Felidae
Loxodonta 9407 12810 Elephantidae
Elephas 1885 2021 Elephantidae



TABLE IV: Dataset Taxonomic Species Breakdown

Taxonomic Name Observation Count Image Count Family
Lynx rufus 19043 11641 Felidae
Panthera leo 6782 4935 Felidae
Puma concolor 5239 2725 Felidae
Panthera pardus 2964 1360 Felidae
Acinonyx jubatus 1872 1245 Felidae
Panthera onca 1831 745 Felidae
Leopardus pardalis 1324 866 Felidae
Panthera tigris 788 433 Felidae
Lynx canadensis 727 355 Felidae
Caracal caracal 573 299 Felidae
Herpailurus yagouaroundi 448 315 Felidae
Leptailurus serval 442 279 Felidae
Felis lybica 372 252 Felidae
Leopardus weidii 362 209 Felidae
Felis silvestris 345 228 Felidae
Leopardus geoffroyi 288 174 Felidae
Lynx lynx 260 75 Felidae
Felis chaus 228 138 Felidae
Prionailurus bengalensis 178 76 Felidae
Lynx pardinus 109 50 Felidae
Prionailurus javanensis 77 31 Felidae
Leopardus tigrinus 67 36 Felidae
Leopardus guigna 55 37 Felidae
Leopardus guttulus 47 33 Felidae
Panthera uncia 46 12 Felidae
Caracal aurata 22 24 Felidae
Otocolombus manul 20 6 Felidae
Neofelis diardi 19 8 Felidae
Felis nigripes 17 4 Felidae
Prionailurus viverrinus 17 9 Felidae
Leopardus pajeros 16 10 Felidae
Leopardus colocola 16 7 Felidae
Leopardus garleppi 12 6 Felidae
Prionailurus rubiginosus 12 5 Felidae
Pardofelis marmorata 11 3 Felidae
Leopardus emiliae 10 5 Felidae
Felis margarita 10 1 Felidae
Leopardus braccatus 9 5 Felidae
Leopardus jacobita 7 2 Felidae
Prionailurus planiceps 7 3 Felidae
Catopuma temminckii 6 2 Felidae
Neofelis nebulosa 5 2 Felidae
Felis bieti 4 0 Felidae
Leopardus fasciatus 2 0 Felidae
Catopuma badia 1 0 Felidae
Loxodonta africana 8939 12313 Elephantidae
Elephas maximus 1885 2021 Elephantidae
Loxodonta cyclotis 222 214 Elephantidae



TABLE V: Dataset Taxonomic Subspecies Breakdown

Taxonomic Name Observation Count Image Count Family
Panthera leo melanochaita 5587 4035 Felidae
Panthera pardus pardus 2449 1160 Felidae
Acinonyx jubatus jubatus 1642 1079 Felidae
Panthera leo leo 786 672 Felidae
Panthera tigris tigris 710 430 Felidae
Lynx rufus fasciatus 410 263 Felidae
Puma concolor couguar 357 172 Felidae
Caracal caracal caracal 349 163 Felidae
Lynx rufus rufus 262 163 Felidae
Panthera pardus fusca 222 107 Felidae
Puma concolor concolor 167 99 Felidae
Felis lybica cafra 167 112 Felidae
Panthera pardus kotiya 164 77 Felidae
Leptailurus serval lipostictus 152 96 Felidae
Felis silvestris silvestris 144 98 Felidae
Felis chaus affinis 105 69 Felidae
Leptailurus serval serval 87 54 Felidae
Felis lybica lybica 81 74 Felidae
Leopardus pardalis mitis 58 44 Felidae
Leptailurus serval constantina 57 46 Felidae
Acinonyx jubatus hecki 46 37 Felidae
Prionailurus javanensis sumatranus 38 16 Felidae
Prionailurus bengalensis euptilurus 32 16 Felidae
Lynx rufus escuinapae 27 16 Felidae
Felis lybica ornata 26 16 Felidae
Prionailurus bengalensis bengalensis 22 13 Felidae
Neofelis diardi borneensis 16 8 Felidae
Panthera tigris sondaica 15 0 Felidae
Panthera pardus delacouri 15 10 Felidae
Lynx lynx lynx 14 6 Felidae
Leopardus guigna guigna 13 9 Felidae
Leopardus pardalis pardalis 11 8 Felidae
Panthera pardus tulliana 11 5 Felidae
Panthera tigris altaica 11 0 Felidae
Panthera pardus melas 10 1 Felidae
Caracal caracal nubicus 10 9 Felidae
Felis silvestris caucasica 9 7 Felidae
Prionailurus javanensis javanensis 8 1 Felidae
Prionailurus viverrinus viverrinus 8 5 Felidae
Lynx lynx dinniki 8 7 Felidae
Leopardus guigna tigrillo 5 4 Felidae
Lynx lynx isabellinus 5 0 Felidae
Lynx lynx carpathicus 5 4 Felidae
Leopardus tigrinus oncilla 4 0 Felidae
Pardofelis marmorata marmorata 4 2 Felidae
Elephas maximus indicus 877 920 Elephantidae
Elephas maximus maximus 567 740 Elephantidae
Elephas maximus borneensis 180 146 Elephantidae
Elephas maximus sumatranus 18 12 Elephantidae



TABLE VI: metadata Features

Feature Description Unit/ Format Timeframe
Observed on Time of observation ISO8601 Instant
Coordinates World Geodetic System (WGS84) (latitude, longitude) Instant
Positional accuracy Publicly available positional accuracy R Instant
Elevation Meters above sea level Meters (m) Instant
Ground temperature (2m) Air temperature 2 meters above ground Celsius (◦ C) Hourly
Relative humidity (2m) Humidity 2 meters above ground Percentage (%) Hourly
Dew point (2m) Dew point 2 meters above ground Celsius (◦ C) Hourly
Apparent temperature Real feel temperature considering additional factors Celsius (◦ C) Hourly
Surface pressure Atmospheric air pressure at the surface. Hectopascal (hPa) Hourly
Cloudcover Cloudcover within the immediate area % of area covered Hourly
Low cloudcover Cloudcover and fog up to an altitude of 3 kilometers % of area covered Hourly
Mid cloudcover Cloudcover from 3− 8 kilometers altitude % of area covered Hourly
High cloudcover Cloudcover from 8 kilometers altitude % of area covered Hourly
Wind speed (10m) Wind speed at 10 meters above ground kilometers per hour (km/h) Hourly
Wind speed (100m) Wind speed at 100 meters above ground kilometers per hour (km/h) Hourly
Wind direction (10m) Wind direction at 10 meters above ground Degrees (◦) Hourly
Wind direction (100m) Wind direction at 100 meters above ground Degrees (◦) Hourly
Wind gusts (10m) Maximum wind speed of the preceding hour kilometers per hour (km/h) Hourly
Shortwave radiation Average shortwave solar radiation of the preceding hour Watt per square meter (W/m2) Hourly
Direct radiation Average direct solar radiation of the preceding hour Watt per square meter (W/m2) Hourly
Diffuse radiation Average diffuse solar radiation of the preceding hour Watt per square meter (W/m2) Hourly
Vapor pressure dificit A high VPD effects the transpiration of plants Kilopascal (kPa) Hourly
Evapotranspiration Water evaporation into the atmosphere Millimeters (mm) Hourly
ET0 FAO Evapotranspiration Metric estimating required irregation for plants Millimeters (mm) Hourly
Precipitation Hourly precipitation sum (rain, showers, snow) Millimeters (mm) Hourly
Snowfall Hourly snowfall sum Centimeters (cm) Hourly
Rain Large scale weather systems resulting rain Millimeters (mm) Hourly
Hourly Weather code WMO numeric weather code WMO code Hourly
Soil temperature (0cm-7cm) Temperature in the soil at 0-7 centimeters Celsius (◦) Hourly
Soil temperature (7cm-28cm) Temperature in the soil at 7-28 centimeters Celsius (◦) Hourly
Soil temperature (28cm-100cm) Temperature in the soil at 28-100 centimeters Celsius (◦) Hourly
Soil moisture (0cm-7cm) Average water content in the soil at 0-7 centimeters Meter cubed per meter cubed (m3/m3) Hourly
Soil moisture (7cm-28cm) Average water content in the soil at 7-28 centimeters Meter cubed per meter cubed (m3/m3) Hourly
Soil moisture (28cm-100cm) Average water content in the soil at 28-100 centimeters Meter cubed per meter cubed (m3/m3) Hourly
Daily Weather code WMO numeric weather code WMO code Daily
Max temperature (2m) Maximum daily temperature at 2 meters above ground Degrees (◦) Daily
Min temperature (2m) Minimum daily temperature at 2 meters above ground Degrees (◦) Daily
Apparent temperature max Maximum real-feel temperature at 2 meters above ground Degrees (◦) Daily
Apparent temperature min Minimum real-feel temperature at 2 meters above ground Degrees (◦) Daily
Precipitation sum The sum of daily precipitation (rain, showers, snowfall) Millimeters (mm) Daily
Rain sum Sum of daily rain Millimeters (mm) Daily
Snowfall sum Sum of daily snowfall Centimeters (cm) Daily
Precipitation hours The number of hours with rain in a day Z Daily
Sunrise Local sunrise time ISO 8601 Daily
Sunset Local sunset time ISO 8601 Daily
Wind speed max (10m) Maximum daily wind speed 10 meters above ground Kilometers per hour (km/h) Daily
Wind gusts (10m) Maximum daily gust speed at 10 meters above ground Kilometers per hour Daily
Dominant wind direction Dominant daily wind direction for winds at 10 meters Kilometers per hour (km/h) Daily
Shortwave radiation sum The daily sum of short wave radiation Megajoules per meter squared (MJ/m2) Daily
Daily evapotranspiration Sum of daily evapotranspiration Millimeters (mm) Daily
Terrestrial Terrestrial or aquatic observation {0, 1} Instant
Hemisphere Location lies in the northern/ southern hemisphere {0, 1} Instant
Day Sighting occurrence in light/ dark {0, 1} Instant
Season Season of sighting, dependent on hemisphere Season Instant

The table occurs in sections including: primary metadata, secondary hourly metadata, secondary daily aggregate metadata, and further derived secondary
metadata. Descriptions of the hourly and daily metadata are sourced from the Open-Meteo API documentation, for a further and more detailed resource

please review the API documentation.

https://www.nodc.noaa.gov/archive/arc0021/0002199/1.1/data/0-data/HTML/WMO-CODE/WMO4677.HTM
https://www.nodc.noaa.gov/archive/arc0021/0002199/1.1/data/0-data/HTML/WMO-CODE/WMO4677.HTM
https://open-meteo.com/en/docs


(a) Meta-model Taxon Family Performance (b) Image-model Taxon Family Performance

Fig. 14: Taxonomic Family Meta and Image Model f1-score

(a) Meta-model Taxon Genus Performance (b) Image-model Taxon Genus Performance

Fig. 15: Taxonomic Genus Meta and Image Model f1-score

(a) Meta-model Taxon Species Performance (b) Image-model Taxon Species Performance

Fig. 16: Taxonomic Species Meta and Image Model f1-score



(a) Meta-model Taxon Subspecies Performance (b) Image-model Taxon Subspecies Performance

Fig. 17: Taxonomic Subspecies Meta and Image Model f1-score



(a) Performance Differences between the Cascading Ensemble Classifier
and the Image Classifier at the Family Taxonomy

(b) Performance Differences between the Cascading Ensemble Classifier
and the Image Classifier at the Genus Taxonomy

(c) Performance Differences between the Cascading Ensemble Classifier
and the Image Classifier at the Species Taxonomy

(d) Performance Differences between the Cascading Ensemble Classifier
and the Image Classifier at the Subspecies Taxonomy
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